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bstract

In this report, we determine whether genes identified in a previously reported cDNA microarray investigation of childhood acute lym-
hoblastic leukaemia (ALL) diagnostic bone marrow have the same distinguishing power in an independently derived cDNA microarray
ataset from an equivalent but distinct patient cohort. Genes previously reported as discriminatory, generally were unable to distinguish

LL lymphocyte lineages, the presence of the Tel-AML1 translocation and patient risk stratification. An artificial neural network identified

ndoglin, which was reported in the initial study as a potential lineage marker, was actually better at identifying ALL patients with poor
utcome.

2007 Elsevier Ltd. All rights reserved.
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. Introduction

There have been numerous investigations into the classifi-
ation of childhood acute lymphoblastic leukaemia (ALL)
sing microarray generated gene expression profiles. The
ltimate intention of a number of these investigations is to
dentify sets of genes whose expression correlate for dis-
ase progression, clinical outcome or the identification of
ovel subtypes of ALL. In general, the approach has been to
nterrogate the microarray gene expression data for simplified
ommon ‘signatures’ which consist of a reduced numbers of
enes which best discriminate ALL patient subgroups. Crit-
cal to robust research is the ability to replicate experimental
ndings. Within the field of microarray analysis, validation

f the expression of identified ‘significant genes’ is required
o be undertaken in independent laboratories on equivalent
ut separately derived data sets.

∗ Corresponding author. Tel.: +61 2 98451205; fax: +61 2 98453078.
E-mail address: danielc@chw.edu.au (D. Catchpoole).
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The study by Moos et al. [1] reported the analysis of 51
one marrow samples from children with acute leukaemia
sing cDNA spotted microarray. Gene expression data from
608 genes in leukaemic blasts were assessed using para-
etric t-test comparison (two tailed, homoscedastic) and

nfoscore, a non-parametric rank-based scoring system for-
ulated on conditional entropy ([1] and references therein).
sing these two supervised methods the investigators iden-

ified a signature of 20 discriminating genes in an attempt
o demonstrate how microarray gene expression profiling

ay augment current risk-based classification of paediatric
eukaemia [1].

In this paper, we report the examination of the genes iden-
ified by Moos et al. [1], in what we shall call ‘The Utah
tudy’, as being the ‘best’ discriminators in cDNA microar-
ay gene expression data generated from 54 bone marrow

amples obtained from childhood ALL patients presenting at
he Children’s Hospital at Westmead. Comparisons made by
he Utah Study include childhood ALL patients having dif-

erent immunophenotypic lineage (B versus T), ALL patients

mailto:danielc@chw.edu.au
dx.doi.org/10.1016/j.leukres.2007.04.021
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n different risk strata and ALL patients having the t (12;
1) translocation. Unlike the Utah Study, no acute myeloid
eukaemia samples were included in this investigation. We
escribe how the differentially expressed genes identified
sing both analytical approaches by The Utah Study [1]; do
ot provide the level of distinction between these subgroups
n our patient cohort. The reason for this discrepancy will be
iscussed. Analysis of our data with an alternative machine
earning approach indicated that the expression of endoglin,
hich was identified in The Utah Study as being able to dis-

riminate ALL lineage, was better at identifying ALL patients
ho eventually succumbed to the disease. This investigation
ighlights the difficulty in trying to identify simple biological
elationships in a complex heterogeneous disease like ALL
sing a multidimentional gene expression data generated by
icroarray technology.

. Materials and methods

.1. Patient specimens and clinical data

Bone marrow from 54 patients with ALL presenting at the
hildren’s Hospital at Westmead was collected between the
ears 1999–2003. This period corresponds to that reported by
he Utah Study. All specimens, as well as the associated com-
rehensive clinical and follow-up data for each patient, were
ade available to the chief investigators for this project with

he approval of and according to the guidelines established by
he Children’s Hospital at Westmead’s, Tumour Bank Com-

ittee and institutional Human Research Ethics Committee.
ll new ALL patients were routinely assessed and tested for
atient and disease-related prognostic indicators, specifically
ecording age at diagnosis, white cell count, cytogenetics with
olecular assessment for translocations and DNA ploidy.
ll patients were subsequently treated following the Berlin
rankfurt Munster (BFM) 95 protocol.

Bone marrow aspirates in excess of diagnostic require-
ents were collected into EDTA tubes and subsequently

nap-frozen in liquid nitrogen and stored at −80 ◦C in the hos-
itals Tumour Bank. A cohort of bone marrow samples were
lso collected, from donors who did not have leukaemia and
hose marrow has been deemed normal by light microscopy

xamination.

.2. RNA isolation and microarray analysis

Total RNA was extracted from frozen bone marrow
amples using Trizol LS (GibcoBRL, Integrated Science)
ollowing a modified procedure which allows the success-
ul and reproducible extraction of intact total RNA from
rozen archival bone marrow samples [2]. RNA quality was

ssessed by determining the A260/280 ratio by spectropho-
ometry, while 3 �g RNA was loaded onto a 1% denaturing
garose subject to electrophoresis followed by staining with
thidium bromide. Gel images were taken and the intensity

c
t
a
t

earch 31 (2007) 1741–1747

f the 28S and 18S ribosomal RNA bands determined by
ixel density with the 28S:18S ratio [3]. RNA from 10 nor-
al samples were pooled and subsequently used as control
aterial in microarray experiments so as to remove any bias

ntroduced by individual gene expression variation within our
ontrol population.

The techniques used for the microarray cDNA prepara-
ion, indirect fluorescence labelling and hybridization are per
he techniques used at The Institute for Genome Research
TIGR, USA) [4]. We combined equal amounts of Cy5-
abelled cDNA derived from ALL patient mRNA with the
y3-labelled cDNA from pooled normal mRNA controls and
ixed with 5 × SSC buffer which contained 25% formamide,

.1% SDS, 10 �g human Cot1 DNA, 20 �g heat-denatured
sDNA, 6 �g polyA, and 12 �g yeast tRNA. This cocktail
as denatured for 5 min at 95 ◦C prior to being hybridized

o cDNA microarrays over night at 42 ◦C. cDNA microar-
ays were supplied by the Peter MacCallum Cancer Centre
nd consisted of 10,500 sequence verified human genes
potted onto Telechem® slides. Following hybridization, the
icroarray was washed in a pre-warmed (50 ◦C) 1 × SSC

olution containing 0.03%SDS for 5 min followed by suc-
essive 5 min washes in 0.2 × SSC and 0.05 × SSC at room
emperature. The microarrays were scanned on an Axon
I Scanner with a multi-channel image generated which
as subsequently analysed with Genepix software (Axon,
SA).

.3. Data analysis

Each ALL RNA sample was hybridized to at least three
eparate cDNA microarray slides. Feature and background
ntensity was generated for each of the Cy5 (R) or Cy3
G) channel. Ratios of local background corrected fluores-
ence intensity from each channel were log2 transformed
log2 R/G). The microarray log2 R/G ratio data generated
rom Genepix was normalised using the within-print-tip-
roup intensity dependent location normalization (LOESS)
ithin Bioconductor (R-package http://www.r-project.org/)
as performed on all the microarrays. Missing values from

he resultant normalized microarray data was filled using K
earest neighbour approach as per The Utah Study. Nor-
alised data was merged for each sample replicate with
ean log2 R/G value used as the gene expression value for

ubsequent analyses.
The genes previously selected by The Utah Study as hav-

ng discriminating gene expression signatures were identified
n our microarray data set by cross matching the Genbank
ccession numbers following conversion to Unigene codes.
ierarchical clustering with the centred Pearsons similarity
etric used by The Utah Study was performed using the

cuity software package (Axon, USA). In addition, principal

omponent analysis (PCA) was used to assess the discrimina-
ory ability of the genes for each subgroup comparison using
multi-dimensional scaling approach. Finally, we subjected

he genes to a two-tailed homoscedastic t-test to determine

http://www.r-project.org/
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he chance (p-value) of these each gene discriminating the
ubgroups in our ALL sample cohort.

Infoscore does not consider the actual gene expression val-
es, but the ranking and position of values are being compared
nd hence, can indicate whether the data sets differ or not and
ow greatly they differ. The data generated using Infoscore
id not demonstrate any unique attributes when compared to
he t-test. Consequently, no data from the Infoscore analysis
ill be shown but will be referred to in the text only.

.4. Artificial neural network (ANN) analysis

For this analysis we included data generated from addi-
ional samples with 64 patients being examined. The patient
ohort were divided on the basis of clinical status with 56
eing alive at the time of analysis and 8 who had died. In a
eparate comparison 63 patients were divided on the basis on
ell lineage with 47 being B-lineage and 16 T-lineage. The
ene expression ratios were normalized using LOESS nor-
alization method. In order to include only high quality data

n the ANN analysis, the clones which had less than 90% of
eatures generating signal above local background across all
amples were excluded. There were 4989 clones that passed

his initial filter. In case of average quality greater than 0.9,
he expression ratio of low quality spot in an individual sam-
le was replaced with the average ratio of this spot across
ll samples. We then used PCA to reduce the dimensional-

s
n
o
r

ig. 1. Comparison of childhood ALL samples based on genes from The Utah Study
luster plot. T lineage indicated by orange dendrogram lines. Genebank annotation,
omparisons are shown. (B) PCA plot. T-lineage samples are indicated with orange
earch 31 (2007) 1741–1747 1743

ty of the data to the top 10 principal components as inputs
or ANN. We used feed-forward resilient back-propagation
ulti-layer perceptron ANN with 3 layers [5]. The contribu-

ion of each gene to the classification was determined by the
NN models by measuring the sensitivity of the classifica-

ion to a change in the expression level of each gene. In this
ay, the genes were ranked according to their significance to

he classification.

. Results

.1. Annotation and gene selection

Both our gene dataset and that of The Utah Study were
dentified using Genebank accession numbers. To cross-

atch the equivalent genes on our microarray with The Utah
tudy signatures, all relevant Genbank accession codes were
onverted to Unigene cluster code. Our gene set was inter-
ogated on the basis of both Unigene accession numbers
nd gene name. In the identified genes used to discrimi-
ate the various ALL sub groups, we found between four
nd seven genes were not present on our array. For the gene

ets used to distinguish risk groups or Tel/AML cytoge-
etic status, the genes not found on our microarray consisted
f expressed sequence tags and unspecified clones. With
egards to the lineage comparison, gene not identified in

scored by t-test reported to distinguish T & B-lineage with (A) Hierarchical
p-value following t-test and the ANN ranking data for lineage and outcome
spheres.
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Fig. 2. Comparison of the normalised log2(R/G) cDNA microarray values
for endoglin in childhood ALL samples. Box plots demonstrate the distribu-
tion of values when comparing (A) cell lineage or (B) patient outcome. The
bar indicates the mean value for the sample cohort, whilst the box 75% of
distribution, the whiskers 25% whilst the asterisk are outliers. Of the patients
who reached 5 year EFS, 29 were B-lineage with a mean log2R/G expression
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ur data set, and hence excluded from our validation process
nclude CD74 (also called MHC class II HLA DR gamma)
AA047040), MHC class II HLA-DR-alpha (W24610), MHC
lass II HLA-DR-alpha (W17387), MHC class II HLA-DQ-
lpha (W67573), and CD1e antigen (W05301). A number of
enes in the discriminating gene list where identified as ‘no
ignificant match’ and consequently could not be validated.

.2. Lineage subgroup: T-lineage versus B-lineage

The genes identified as best distinguishing the B-lineage
nd T-lineage ALL subgroups were compared in our cohort.
ue to the annotation shortfalls, 14 genes identified using

-test and 15 genes with Infoscore in The Utah Study were
sed to distinguish our T-ALL (14) from B-ALL (40) sam-
les. Dendrograms generated by the hierarchical cluster
nalyses indicated a clear distinction between the T and
-lineage (Fig. 1A). The Utah Study indicated that the 20
est discriminating genes were identified with p ranging
rom 2 × 10−9 to 6 × 10−4 which was considered to be of
high significance’, although it is unclear whether a correc-
ion for multiple hypothesis testing was considered. In our
ohort, only three genes reached significance when using the
-test and considering a Bonferroni adjustment for signifi-
ance (α = 5 × 10−6); CD3D antigen (AA055948), and the
wo MHC class II DP genes (AA033653, W35115). Lacto-
ransferrin (H21797), protein tyrosine phosphatase receptor
ype C (H10346), endoglin (W24164) and protein tyrosine
inase 2 (AA554361) indicate differential expression, but do
ot differentiate according to leukaemia lineage. The remain-
ng genes did not correspond with the published paper, as no
istinguishing expression pattern was observable (Fig. 1A).
rincipal component analysis (PCA) similarly supported the
bility of The Utah Study lineage classifier to draw a dis-
inction between T and B-ALL (Fig. 1B) with 57.0% of the
ariance being represented by the first three components.
ene sets identified by both the t-test and Infoscore lead to

uccessful segregation of samples on the basis of lineage in
ur samples cohort.

To further interrogate our findings, our cDNA microarray
ata was independently evaluated using an ANN approach.
ollowing quality filtering, 4989 genes were assessed to iden-

ify genes best at distinguishing ALL on the basis of lineage.
enes were ranked and those used by The Utah Study were

dentified (Fig. 1A). Of specific interest was the rank of
83 for the gene for endoglin, a proliferation-associated cell
embrane antigen not previously identified as being able to

istinguish lymphocyte lineage. This gene was identified by
he Utah Study as a potential lineage marker. However, fol-

owing repeat analysis using the ANN, but comparing ALL
atients on the basis of clinical outcome, endoglin was ranked
umber 7 in its ability to distinguish ALL patients who were

live at the time of analysis compared to patients who had
ied (Fig. 1A). Examination of the cDNA microarray gene
xpression ratio for endoglin further indicated this distinction
n the 36 patients who had reached a 5-year event free survival

a
d
V
L

alue of 1.24 and 7 were T-lineage at a mean of 3.138. For the patients who
ad relapsed 6 were B-lineage at a mean of 8.153 and 6 were T-lineage at
2.784.

ndpoint compared to the 12 who had suffered a relapsed or
ied (Fig. 2A and B) whilst t-test confirmed a significant
ariations in the distribution of values between ALL patients
n the basis of outcome (p = 0.00129). Fig. 1A indicates that
he ranks of The Utah Study lineage classifier genes. Like
ndoglin, selectin L, lactotransferrin (H21797) and protein
yrosine phosphatase receptor type C (H10346) demonstrate
similar elevation in rank when discriminating between ALL
amples on the basis of outcome. However, only selectin

reached significance (p = 0.03). By contrast, lysosomal-

ssociated multispanning membrane protein-5 (NM006762)
id not rank highly on the basis of outcome comparisons.
asoactive intestinal peptide receptor 1 (AA058412), and
OC 126208 (AA029811) were lowly ranked with both ANN
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omparisons and did not appear discriminatory following this
nalysis.

.3. Cytogenetic subgroup: Tel-AML positive & negative

Only five (5) Tel-AML positive B-ALL patients were
resent in our cohort. When compared to the Tel-AML neg-
tive (43) data slight differences were noted. Clustering of
ur sample cohort using the published genes from both the t-
est (14 annotated) and Infoscore (12 annotated) approaches
howed no ability to distinguish B-ALL samples having
he Tel-AML translocation (Fig. 3A). Expression of glyoxy-
ate reductase (W39164/R83908), a gene focussed on in the
ublished results, did not show differential expression as
xpected and in fact demonstrated increased expression in
our of the five Tel-AML positive samples, which is the con-
erse of the findings of The Utah Study. PCA demonstrates
lose relationship of the Tel-AML positive samples in both

ene classifiers with 44.5% of the total variance being repre-
ented with the first three principal components in the t-test
lassifier. However, no distinction from the Tel-AML nega-
ive samples was observed (Fig. 3B). No gene was found to

k
U
m
f

ig. 3. Comparison of childhood ALL samples based on genes from The Utah Stud
r (C and D) risk stratification. (A and C) Hierarchical cluster plots of reported disti
o be cross matched in our dataset. (B and D) PCA plot. Red spheres represent sam
tratified as standard risk (SR) according to the BFM95 protocol.
earch 31 (2007) 1741–1747 1745

istinguish Tel-AML positive and Tel-AML negative patients
o a significant p value when tested across our samples.

.4. Clinical subgroup: standard risk (SR) versus
edium risk (MR)

Our ALL cohort were divided into classes based on risk
tratification protocol used in BFM95 protocol with which
hese patients were treated. This is equivalent to the NCI
riteria followed by The Utah Study. However, as the exact
riteria was not stated, direct comparison of risk stratification
ubgroups was not possible. However, we used the published
-test and Infoscore derived classifiers to distinguish the two

ajor subgroups in our cohort, SR and MR B-ALL. Neither
lassifier was able to distinguish these clinical subgroups.
his is illustrated by both hierarchical clustering (Fig. 3C)
nd PCA (Fig. 3D) where 61.7% of the total variance is rep-
esented within the first three principal components. Protein

inase C substrate (NM002743), the gene identified in The
tah Study, had a p values of 0.208 which was the second
ost significant of the risk group classifier. No gene was

ound to distinguish patients on the basis of BFM95 risk

y scored by t-test reported to distinguish (A and B) Tel-AML1 cytogenetics
nguishing genes which were identified by The Utah Study which were able
ples positive for the TelAML translocation. Blue spheres represent patients
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roups to a significant p value when tested across our patient
ohort.

. Discussion

Investigations such as The Utah Study aim to reduce
ighly dimensional data derived from complex diseases to
dentify small numbers of genes which distinguish patients
s belonging to particular disease subgroups. If such ‘sig-
atures’ of differentially expressed genes are to be used
or diagnostic and clinical applications, such gene expres-
ion patterns need to be equally informative across sample
ohorts from different sites. That is, the utility of this tech-
ology for molecular diagnosis should demonstrate a degree
f resilience to variations which may be introduced during
ample collection as well as platform and technical condi-
ions under which the experiments are performed. With this
n mind, we have undertaken a validation study of genes
reviously published as being able of discriminate different
hildhood ALL subtypes [1]. By making such a comparative
nvestigation using the same cDNA glass slide microarray
latform whilst using an equivalent but independently derived
ample cohort from The Children’s Hospital at Westmead,
ustralia, we hoped to determine whether this approach to

nalysing microarray data will have utility in the broader
iagnostic setting.

Of the 14 genes identified by The Utah Study, which were
vailable for validation and that best discriminate B-lineage
nd T-lineage ALL immunophenotypes, a suitable distinc-
ion was also made within our patient cohort. A number
f individual genes identified by both t-test and Infoscore
pproaches could, in isolation, be used to identify a B-lineage
LL from a T-lineage. CD3 is a classic marker for T cell
alignancies and is often identified as a highly significant dif-

erentially expressed gene when comparing lineages in acute
ymphoblastic leukaemia. All but one identified T-lineage
LL in our cohort had highly increased CD3 expression
hen compared to normal bone marrow. Similarly, the MHC
istocompatibility complex gene family, whose expression
as confirmed using rtPCR by the Utah Study, were overly

xpressed in B-lineage ALL as expected. It is most likely
hat the combination of these few genes is what identified the
istinction evident in our cohort (Fig. 1B). None of the other
enes selected by both t-test and Infoscore, as being differ-
ntially expressed in The Utah Study cohort were shown to
e differentially expressed between the lineage subtypes in
ur dataset.

Indeed, no genes which were identified as being able to
lassify ALL on the basis of cytogenetic abnormality or risk
tratification criteria by The Utah Study were able to dis-
inguish the same groups in our patient cohort (Fig. 3). The

ow combined variance levels in the first three components of
ach of the PCA plots further indicates the lack of distinction
etween the subgroups based on the genes identified. With
hese comparisons, The Utah Study indicated that all of the

g
a
l
s

earch 31 (2007) 1741–1747

est discriminating genes were identified with a probability
anging from p = 0.00001 to 0.0002. However, consideration
f a correction for multiple hypothesis testing, such as Bon-
erroni, would put in doubt whether these probability values
ere, in reality, significant.
Despite the similarities in the sample cohort and microar-

ay platform, differences with sample preparation and the
xperimental design between the two studies needs to be iden-
ified. Firstly, The Utah Study worked with freshly isolated
one marrow which was subsequently processed to isolate
he mononuclear cells using Ficoll. In our case, bone mar-
ow was obtained from the Children’s Hospital at Westmead
umour Bank where it had been cryopreserved as whole sam-
les by snap freezing in liquid nitrogen soon after aspiration.
NA isolation from the frozen bone marrow pellet was under-

aken using a method derived specifically for this purpose [2]
nd yields high quality RNA [3], which, in our hands, is
f better quality than that which can be achieved from cells
ollowing Ficoll isolation (data not shown). All the ALL sam-
les within our sample cohort were identified as having high
last count, so the gene expression data should represent the
eukaemic population. Nonetheless, there is the considera-
ion that the influence of non-lymphoid and non-leukaemic
ucleated white cells may create discrepancies between the
wo gene expression datasets.

Of greater importance to the interpretation of results from
hese studies is the source of the control RNA used during
ybridization. The Utah Study used RNA isolated from the
L60 cell line, which is known to be sensitive to differenti-

tion effects of culture conditions, hypoxia and confluence,
nd may not represent a constant background of gene expres-
ion against which to compare the ALL samples. Indeed,
number of the genes identified in this study are known

o be influenced by the differentiation status of HL60 cell
ines. Endoglin is known to be upregulated in myeloid cells
ndergoing macrophagic differentiation for which phorbal
2-myristate 13-acetate treated HL60 is an experimental
aradigm [6], whilst selectin-L expression is diminished
n retinoic acid treated HL60 cells [7]. Further, The Utah
tudy was comparing diseased cells to an attenuated dis-
ased cell which effectively defeats their stated purpose of
sing microarray technology to identify relevant pathways
hich may provide the targets for novel therapeutics [1]. In
ur experiments however, bone marrow from normal (non-
alignant) donors was pooled from different groups of 10

ndividual samples. As such, for our comparison, the ALL
one marrow tissue was compared to normal tissue repre-
enting the normal population.

The identification of differentially expressed genes within
icroarray data is often performed to identify key biomarkers
hich can be applied to diagnostic purposes, investigated for

unctional activity or become the target for therapeutic strate-

ies. Endoglin was identified in the original microarray report
s significant in the distinction between B-lineage and T-
ineage ALL, and was confirmed using rtPCR on the training
ample cohort. This was, however, not confirmed as differ-
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ntially expressed by rtPCR on an independent test set. This
et only contained two T-lineage ALL samples [1]. Indeed,
ndoglin showed no differential expression which segregated
ith patient immunophenotype in our sample cohort either.
owever, examination of expression values across our sam-
le cohort did indicate a distinct range of expression values
hich was unlike any of the other genes identified by The
tah Study except for the known lineage related genes CD3

nd MHC gene family. It is well established that T-lineage
LL are more difficult to treat than B-lineage ALL. Hence,
hen making an alternative comparison involving other clin-

cal criteria, the identification that endoglin expression at
iagnosis could distinguish childhood ALL on the basis of
atient outcome (5-year event free survival versus relapse or
eath) (Fig. 2A), stands to reason and reflects a unique bio-
ogical role for endoglin in childhood ALL. This result may
eflect how the microvascular environment influences patient
esponse to therapy. Similarly, it may reflect the presence
f more proliferative subpopulations of haematopoietic stem
ells [8]. The prognostic potential of endoglin expression in
one marrow for childhood ALL should be explored further.

More significantly, the results from this study indicate that
eductionist data analysis is unlikely to identify biomarkers
r small subsets of genes, the expression of which will univer-
ally segregate patients into subpopulations, especially when
elatively small numbers of samples are collated to represent

complex and heterogeneous diseases such as childhood
LL. For this to be achieved the high dimensionality of
icroarray data necessitates that samples in the numbers

pproximating the number of gene features on a microar-
ay be collected before we can confidently move forward.
n this case, our results with endoglin highlight that such
eductionist approaches may oversimplify expected relation-
hips and obscure significant biological interactions. Rather
onsideration of the inclusion of all clinical and biological

eatures of childhood ALL into the data analysis method-
logy will potentially increase the diagnostic potential and
nowledge discovery which can be gained from microarray
ene expression investigations.

[
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